LAND AT SHERBORNE HOUSE,
LECHLADE, GLOUCESTERSHIRE

POST-EXCAVATION ASSESSMENT

C.A.T. JOB: 0542
C.A.T. REPORT: 98903

JUNE 1998

This report has been researched and compiled with all reasonable skill, care, and attention to detail within the terms of the project as specified by the Client and within the general terms and conditions of Cotswold Archaeological Trust Ltd. The Trust shall not be liable for any inaccuracy, error or omission in the report or other documents produced as part of the Consultancy and no liability is accepted for any claim, loss or damage howsoever arising from any opinion stated or conclusion or other material contained in this report or other documents supplied as part of the Consultancy.

This report is confidential to the Client. Cotswold Archaeological Trust Ltd accept no responsibility whatsoever to third parties to whom this report, or any part of it is made known. Any such party relies upon this report entirely at their own risk.
CONTENTS

CONTENTS.. 1

LIST OF ILLUSTRATIONS.. 3

GLOSSARY .. 4

SUMMARY .. 6

1. INTRODUCTION ... 7

2. LOCATION ... 7

3. ARCHAEOLOGICAL BACKGROUND .. 7

4. ORIGINAL OBJECTIVES ... 9

5. PRESENTATION OF RESULTS .. 10

6. EARLY PREHISTORIC ACTIVITY ... 10

7. LATE BRONZE AGE/EARLY IRON AGE SETTLEMENT .. 11
 The Ditches .. 11
 Roundhouses .. 11

8. MIDDLE IRON AGE ACTIVITY .. 12
 The Ditches ... 12
 The Pits .. 12
 Pit Alignment ... 13
 Enclosure Ditches ... 13

9. ANGLO-SAXON SETTLEMENT .. 13
 Sunken-Featured Buildings .. 14
 Posthole Alignment ... 15
 Pits ... 15

10. SAXON DITCHES .. 16
11. POST-MEDIEVAL AND MODERN

12. DISCUSSION

The prehistoric period
The Anglo-Saxon period
Undated features

13. NATURE OF THE STRATIGRAPHIC RECORD

14. ARTEFACTUAL EVIDENCE

Introduction
14.2 The pottery by Jane Timby
14.3 The animal bone by Mark Maltby
14.4 The fired clay by Jane Timby
14.5 The brick and tile by Emma Harrison
14.6 The worked flint by Graeme Walker
14.7 The slag by Lynne Keys
14.8 The worked stone by Fiona Roe
14.9 The environmental evidence by Keith Wilkinson
14.10 The metalwork by Jane Bircher
14.11 Other small finds by Jane Bircher
14.12 The glass by Emma Harrison
14.13 The shell by Emma Harrison
14.14 The coins by Peter Guest

15. STATEMENT OF POTENTIAL

16. PROPOSAL FOR POST-EXCAVATION ANALYSIS

17. SYNOPSIS FOR PROPOSED REPORT

18. BIBLIOGRAPHY
LIST OF ILLUSTRATIONS

Fig.1 Location plan

Fig.2 Location of study area

Fig.3 All features plan, by phase
GLOSSARY

ANGLO-SAXON
Taken here as the period from the end of the Roman era c AD 410 to the Norman conquest in AD 1066

ARCHAEOLOGY
For the purposes of this project, archaeology is taken to mean the study of past human societies through their material remains, from prehistoric times to the modern era. No rigid upper date limit has been set, but AD 1900 is used as a general cut-off point.

BRONZE AGE
Chronological division of the prehistoric period, which sees the introduction of copper and eventual widespread adoption of bronze weapons, implements, jewellery etc. In Britain it is dated between c2300 BC-700 BC.

CAT
Cotswold Archaeological Trust

IRON AGE
The first period in which iron was the predominant metal. In Britain it is dated between c700 BC to the Roman conquest in AD 43.

NATURAL
Defined in archaeological terms this refers to the undisturbed natural geology of a site, e.g. Lower Lias clay, river terrace gravels etc.

NEOLITHIC
A chronological division of the prehistoric period during which agriculture and domesticated animals are introduced to Britain. It is dated between c4500 BC - 2000 BC.

NGR
National Grid Reference given from the Ordnance Survey Grid.

OD
Ordnance Datum; used to express a given height above mean sea level.
RING-DITCH
A ditch of circular or pennanular plan, usually surviving as a cropmark and often representing the remains of ploughed barrows of Bronze Age date.

ROMANO-BRITISH
Term used to describe a fusion of indigenous late Iron Age traditions with Roman culture, between AD 43 and AD 410.

SETTLEMENT
An area of habitation, perhaps surrounded by associated closes, paddocks, approach ways and other features which together constitute a complex of earthworks or cropmarks distinct from fields.

SFB
Sunken-featured building.

SMR
Sites and Monument Record.
SUMMARY

In February 1997 Cotswold Archaeological Trust was commissioned by Bryant Country Homes to excavate land to the rear of Sherborne House, Lechlade Gloucestershire. The excavation was carried out between May and July 1997 and covered an area of 0.5 hectares.

The preliminary findings of the excavation help elucidate the use and development of the study area, which appears to have started in the early prehistoric period, with intensification during the Iron Age and Anglo-Saxon periods.

The earliest occupation evidence, indicated by three roundhouses, is provisionally dated to the late Bronze Age/early Iron Age. Middle Iron age settlement is alluded to by the development of boundary ditches and the density of storage pits.

No direct evidence of Romano-British activity was identified, suggesting the study area lay within peripheral fields and enclosures associated with the known villa complex at Roughground Farm 1km to the north.

Evidence of early Anglo-Saxon occupation was indicated by six sunken-featured buildings, a possible post-built hall, pits and linear ditches. From a local perspective, the identification of this settlement is highly significant, particularly as only one early Saxon building had previously been identified within Gloucestershire. Furthermore, the identification of the settlement within close proximity to the early Anglo-Saxon cemetery at Butler’s Field would suggest the evidence of Saxon occupation is potentially of national significance.
1. INTRODUCTION

1.1 In February 1997 Cotswold Archaeological Trust was commissioned by Bryant Country Homes to excavate land to the rear of Sherborne House, Lechlade Gloucestershire. The excavation was carried out between May and July 1997 and covered an area of 0.5 hectares. The excavation followed an evaluation by CAT in April 1996, which identified an extensive and dense pattern of archaeological features throughout the study area.

2. LOCATION

2.1 The study area lies close to the centre of Lechlade centred on NGR SU 21269974. The site is bound to the north and south-west by modern housing, to the north-east by recreational parkland, and to the south-east by the gardens of Sherborne House, a listed building of early eighteenth century date (Verey 1979).

2.2 The underlying geology of the site consists of Summertown-Radley terrace gravels (formerly known as Second Terrace gravels) of the Ipswichian/Early Devensian geological period. The study area consists of generally flat land at approximately 77m OD.

3. ARCHAEOLOGICAL BACKGROUND

3.1 The environs of Lechlade are one of the richest and most extensively investigated archaeological landscapes in Gloucestershire. Evidence has been recovered indicating occupation and activity on the terrace gravels from the earliest prehistoric period up to the present day.

3.2 The earliest evidence for human activity in the vicinity of Lechlade consists
of a late Acheulian hand-axe (Glos SMR 2444), found in 1938 and now in the British Museum. Evidence for Neolithic settlement in the area, predominately in the form of pits, has been identified at The Loders 100m south of the study area (Glos SMR 3012; Darvill et al, 1986); at Gassons Road 400m to the north-west (King forthcoming); and at Roughground Farm 1km to the north (Allen et al, 1993). Cropmarks testify to the presence of a late Neolithic/Early Bronze Age cursus (Glos SMR 316) and hengi-form monument (Glos SMR 590-2) approximately 500m and 400m respectively north of the study area.

3.3 There is plentiful evidence of Bronze Age settlement, trackways and ring ditches. The ring ditches are known from aerial photographs, and one of a linear group was excavated at Butler’s Field 325m north of the study area (Miles and Palmer 1985). Two further early Bronze Age burials, probably once covered by a barrow, were revealed 200m north of the study area during excavations at the Memorial Hall (Thomas and Holbrook 1996).

3.4 Iron Age land boundaries were revealed during the excavations at the Memorial Hall, Gassons Road, and Butler’s Field. Evidence of early Iron Age settlement, including land divisions and roundhouses have been recovered from Butlers Field and Roughground Farm. Iron Age pits, and a possible burial (Glos 3014) were found at The Loders.

3.5 The area surrounding Lechlade is rich in Romano-British remains, most notably a substantial villa with associated buildings at Roughground Farm (Allen et al, 1993). A trackway from the villa complex to a small farmstead was found during excavations at Butler’s Field (Miles and Palmer 1985)

3.6 A major Anglo-Saxon cemetery containing 217 inhumations and 32 cremations was excavated at Butlers Field in 1985(ibid.). The size and wealth of the cemetery suggests the presence of a flourishing Anglo-Saxon settlement in Lechlade during the sixth to seventh centuries AD. It has been suggested (ibid.) that cropmarks visible within the recreation ground immediately north-east of the study area may represent Saxon
sunken-featured buildings. Saxon pottery was also been recovered at The Loders (Darvill et al, 1986).

3.7 In 1996 CAT was commissioned to undertake an archaeological evaluation of the proposed development area. This work established the presence of multi-period archaeological remains throughout the study area (Barber 1996). The earliest recognisable activity was represented by Late Bronze Age/Early Iron Age pits and ditches. Artefactual evidence also indicated that Romano-British and Anglo-Saxon features also survived.

4. ORIGINAL OBJECTIVES

4.1 In the CAT specification for archaeological excavation the following general academic objective was stated:

To elucidate the nature of the activity on the site and to establish its chronology.

4.2 The following more specific academic objectives were also stated:

The late Bronze Age/early Iron Age occupation should be examined with reference to the discoveries of similar date at Gassons Road and Butler’s Field. The apparent absence of late Iron Age activity will be investigated more fully.

The nature of the Romano-British activity will be established and integrated into our current understanding of the pattern of Roman landscape organisation as elucidated by excavations at Roughground Farm, Butler’s Field and aerial photography.

Characterisation of features of the Saxon period is a high priority.
especially if this relates to settlement. Firm evidence of settlement that accompanied the Butler’s Field cemetery has yet to be found, and it will be important to compare the ceramic/metalwork assemblages from the two sites in order to try and ascertain their relative chronologies.

5. PRESENTATION OF RESULTS

5.1 The results of the excavation are described below in the following manner. Firstly, evidence for early prehistoric activity is presented (Chapter 6). Secondly, evidence for late Bronze Age/early Iron Age settlement is presented (Chapter 7). This is followed by the presentation of the evidence of early to middle Iron Age activity (Chapter 8). Evidence of Anglo-Saxon settlement and land divisions are presented in Chapters 9 and 10 respectively. Finally, post-medieval and modern activity is presented in Chapter 11. The preliminary conclusions drawn from the excavation results are discussed within Chapter 12 (it is likely that some of the conclusions presented here will be modified in the light of more detailed research). The nature and size of the archaeological archive is presented in Chapter 13. Assessments of the artefactual and environmental evidence are given in Chapter 14. A statement of potential of the excavations is given in Chapter 15, followed by a proposed timetable and synopsis of the publication (Chapters 16 and 17 respectively).

6. EARLY PREHISTORIC ACTIVITY

6.1.1 No features revealed during the excavation can be assigned to this period at this preliminary stage. However, the moderate assemblage of flint artefacts retrieved from residual contexts throughout the excavation suggests a general level of Neolithic and/or Bronze Age activity within the immediate vicinity of the study area.
7. LATE BRONZE AGE/EARLY IRON AGE SETTLEMENT

7.1 Two broadly parallel ditches, provisionally dated as LBA/EIA were identified at the south-western and north-easter limits of the excavation encompassing an area in which three roundhouses were revealed.

The Ditches

7.2 Ditches [013] and [796] delineated the south-western and north-eastern limit of the LBA/EIA activity respectively. The ditches were broadly parallel, aligned WNW-ESE and 750m apart. Both ditches were severely truncated, surviving to a depth of less than 0.1m.

Roundhouses

7.3 On the western limit of the excavation, approximately 50% of Structure 4, a stake-walled roundhouse, was revealed; the remainder lay outside the confines of the excavation. The diameter of the roundhouse was 8m. Full excavation of the ring-grove [494] revealed a limited number of stakeholes penetrating the natural gravel to a maximum depth of 0.6m. Within the interior of the roundhouse a large number of postholes were revealed, although none can be accurately related to the structure due to the lack of artefactual material.

7.4 Structure 5 was fully contained within the excavation. It measured 12m in diameter, with an entrance on its south-eastern side. Three distinct phases of construction were evident, suggesting two quite separate structures, one of post-ring construction, the other incorporating a recut drip gully, although the exact chronology of the development remained unresolved. The interior of the structure had largely been truncated by endemic early to middle Iron Age pitting (see 7.3 below); consequently no internal features could be identified.
7.5 Structure 10 was located within the eastern corner of the excavation and was fully contained within the area of excavation. Two phases of construction are evident. The first phase is represented by a sub-circular drip gully, measuring 12.5m in diameter, with a south-east aligned entrance. The second phase by a post-ring structure 11m in diameter, the postholes of which cut the internal dimensions of the drip gully. Little of the internal area of the structure had survived subsequent truncation by Saxon ditches (see 10.1 below).

8. MIDDLE IRON AGE ACTIVITY

8.1 Middle Iron Age activity is represented by linear ditches, a dense cluster of pits, and a pit alignment. No evidence of contemporary occupation was revealed during the course of the excavation.

The Ditches

8.2 The initial development within this phase was the establishment of boundary ditch [2000]. The ditch was orientated approximately north-east to south-west and extended the full length of the excavation (920m). The later establishment of similarly aligned ditch [2002], and recut [2004], indicates continuity of this boundary. At the south-western limit of the excavation ditch [2000] was noted dividing into two, at a similar point ditch [2002] terminated.

The Pits

8.3 A dense cluster of 68 subcircular pits was encountered within the south-west corner of the excavation. All the pits were at a minimum 50% excavated, with six pits being fully excavated. The pits varied in size from 0.9m to 2.7m in diameter, and from 0.45m to 1.5m in depth. Little artefactual material was
retrieved from individual pits, a typical assemblage being three sherds of pottery and five small fragments of bone. However, a semi-articulated horse leg and pelvis was retrieved from the respective primary fills of pits [914] and [1836], and a dog’s skull recovered from the upper fill of pit [185]. A late Iron Age coin was retrieved from pit [450], although it remains undetermined whether it was from the upper pit fill or from subsoil slumping into the pit.

8.4 The density of the pitting, together with number of intercutting pits, suggests a number of quite distinct phases of activity. The pits respected the alignment of ditches [2000]/[2002] to the west, and to the east formed a north-east to south-west linear alignment. Four metres north-east of this alignment, a similarly orientated linear arrangement of oval pits was revealed (see 8.5 below). The linear alignment of the subcircular and oval pits suggests they respected a now invisible land boundary.

Pit Alignment

8.5 The pit alignment was formed by a total of 21 pits, all sub-oval in plan with a rectangular slot at the base. The pits contained a homogenous fill from which pottery and bone was retrieved.

Enclosure Ditches

8.6 Within the eastern corner of the excavation three interrupted narrow and shallow ditches may represent a possible enclosure. Its southern and western extent was defined by ditch [805], the eastern extent by ditch [2026].

9. ANGLO-SAXON SETTLEMENT

9.1 Six Anglo-Saxon sunken-featured buildings (SFB) and a possible post-built hall were revealed during the course of the excavation. In addition, a number
of pits containing domestic and craft based debris were identified.

Sunken-Featured Buildings

9.2 Structure 1 was identified close to the south-western limit of the excavation, truncating four middle to late Iron Age pits. The structure was sub-rectangular in plan, measured 5.2m in length and 3m in width, and survived to a maximum depth of 0.26m. The sides sloped steeply towards a flat base. Two postholes, [468] and [474], were centrally placed on the edge of the short axes of the pit. A posthole [470] was revealed within the sunken area, and four stakeholes noted along the western edge of the structure. Three distinct fills were revealed: primary fill (242), a comparatively humic fill on the base of the sunken area and also noted lapping up the sides, secondary fill (152) comprising relative clean clays and gravels, and a final silting and/or deliberate backfill (154).

9.3 Structure 3 was centrally located within the excavation area, truncating three sub-oval middle Iron Age pits. The structure was sub-rectangular in plan, measuring 5.1m in length and 3.2m in width, and survived to a maximum depth of 0.38m. Three sides sloped steeply to an uneven base, the exception being the north-western end, which sloped gently and evenly, possibly forming a ‘ramp’. Two postholes, [490] and [492], were centrally placed on the edge of the short axes of the pit. A posthole [509] was revealed within the sunken area at the break of slope from the ‘ramp’. The tripartite sequence of fills previously identified within Structure 1 was again evident.

9.4 Structure 6 was revealed close to the southern edge of excavation. It was approximately sub-rectangular in plan measuring 3.7m in length and 2.2m in width, and survived to a depth of 0.2m. It had irregular sloping sides and a flat base. Two shallow postholes [687] and [689] were centrally placed on the short axes of the structure.

9.5 Structure 7 was sub-rectangular in plan, measuring 5m in length and 3m in width, and survived to a depth of 0.45m. It had steep sloping sides and a flat
base. Two postholes, [1028] and [1431] were centrally placed on the short axes of the structure. A posthole was also identified at each corner of the structure. The tripartite sequence of fills previously identified within Structures 1 and 3 was again evident.

9.6 Structure 8 was located 4m north-west of Structure 3. It was sub-rectangular in plan, measured 4.3m in length and 3.2m in width, and survived to a depth of 0.54m. It had steep, near vertical sides and a flat base. Two large postholes, [1130] and [1136] were centrally placed on the short axes of the structure. The structure contained a single, homogenous fill (784).

9.7 At the north-eastern limit of the excavation approximately 50% of Structure 9 was revealed; the remainder lay outside the confines of the excavation. The structure was sub-rectangular in plan and measured at least 3.7m in length and 3m in width, and survived to a depth of 0.28m. A posthole [1688] was centrally located on the short axis of the structure. A single, homogenous fill (1605) was found throughout the structure.

Posthole Alignment

9.8 A north-west to south-east orientated alignment of fifteen evenly spaced postholes, extending for 16m+ was revealed within the western corner of the excavation. The postholes measured 0.4m in width, and survived to an average depth of 0.15m. A similarly orientated alignment, consisting of five postholes was identified 2m to the south-west. It remains unresolved whether the postholes are representative of post-built Saxon hall or simply a fenced boundary.

Pits

9.9 A total of twelve Saxon pits were revealed during the excavation. The pits varied in size from 0.7m to 1.9m in diameter, and from 0.3m to 1.4m in depth. Artefactual material retrieved from the pits included both domestic and craft based debris, although no discrete areas of zoning can yet be
identified.

10. **SAXON DITCHES**

10.1 Ten linear ditches can be broadly assigned to the Anglo Saxon period. All the ditches appear to respect the Saxon structures, and may therefore represent boundaries within the settlement. Interpretation of ditch [2016] and associated recut [2018] is problematic. It remains unclear whether the ditches are subcircular in plan, or whether the effect of recutting has rounded the corners of a sub-rectangular enclosure.

11. **POST-MEDIEVAL AND MODERN**

11.1 Post-medieval and modern activity was restricted to linear field drains, modern service trenches, and tree planting holes.

12. **DISCUSSION**

The prehistoric period

12.1 The moderate quantities of lithic material retrieved from residual contexts throughout the excavation indicate a general background noise of early prehistoric activity. It remains unresolved whether such evidence indicates occupation within the immediate environs of the excavation, or whether it relates to the known areas of Neolithic and Bronze Age occupation at the Loders, Gassons Road and Roughground Farm.
12.2 The earliest settlement form identified, represented by three roundhouses, is dated to the late Bronze Age/early Iron Age, however, the lack of stratigraphic evidence means it is difficult to elucidate the chronology and length of occupation.

12.3 Occupation continues during the middle Iron Age, although the lack of settlement structures within the excavated area indicates a possible migration of the main settlement focus. The establishment of linear ditches [2000] and [2002/2004], and the dense scatter of large subcircular pits, presumably utilised for storage, are indicative of contemporary settlement within the immediate vicinity.

12.4 At a broad level, the prehistoric activity may be viewed as being typical of the second gravel terrace of the Upper Thames valley. Here, settlements are predominately open in plan, often covering several hectares, and display areas of distinct zoning, with the settlement and pit storage areas kept quite separate (Hingley and Miles 1984, Cunliffe, 1991). The excavation results may therefore be provisionally compared with sites previously excavated within the Upper Thames valley at Stanton Harcourt, i.e. Linch Hill and Gravelly Guy, and at Ashville.

12.5 The prehistoric activity and settlement is of regional archaeological importance.

The Anglo-Saxon period

12.6 The identification of structural elements confirming the presence of Anglo-Saxon settlement in close proximity to, and possibly contemporary with, the Saxon cemetery at Butler’s Field must be seen as nationally significant. From a purely regional perspective, the identification of six sunken-featured buildings and a possible post-built hall is of great significance (previously only one early Saxon structure had been identified within Gloucestershire).
12.7 It would appear that only part of an extensive, dispersed settlement was revealed during the excavation. The limited stratigraphic evidence, coupled with the lack of well-dated comparable Saxon pottery assemblages, means it is difficult at this preliminary stage to elucidate the chronology and length of occupation. It therefore remains unclear whether the Saxon structures belong to a small settlement which shifted over time across the gravel terrace, or a single, large settlement occupied over a relatively short period. However, a broad correlation may be expected between the life span of the settlement and the nearby cemetery, which would suggest occupation of the settlement at least during the sixth and seventh centuries AD.

12.8 Interpretation of the function of the Saxon ditches remains problematic. It remains unclear whether they represent boundaries associated with individual settlement plots or whether they represent an earlier/later phase of Saxon field boundaries. However, it is evident that none of the SFB’s are cut by the ditches, which may suggest they are broadly contemporary and therefore representative of settlement boundaries.

Undated features

12.9 The largest category of feature that remained undated was postholes. It remains unclear whether spatial analysis of these postholes would enable further building plans and/or fence lines to be extrapolated.

13. NATURE OF THE STRATIGRAPHIC RECORD

13.1 The stratigraphic archive for the site consists of the following elements:

<table>
<thead>
<tr>
<th>Category</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context Sheets</td>
<td>1856</td>
</tr>
<tr>
<td>Plans</td>
<td>27</td>
</tr>
<tr>
<td>Sections</td>
<td>340</td>
</tr>
</tbody>
</table>
The following context types were represented:

- Ditches/gullies
- Fills
- Pits
- Postholes
- Structures (circular)
- Structures (sub-rectangular)
- Surfaces

13.2 The on-site methodologies used to recover this evidence were set out in Section 5 of the CAT project design. In summary, the following excavation methods were utilised. A mechanical excavator was used to remove overburden down onto the surface of the archaeological deposits. Areas of concentrated archaeology were hand-cleaned. All discrete archaeological features were 50% excavated by hand. In order to gain a fuller understanding of the Iron Age storage pits it was agreed that at least five such features would be 100% excavated. All identified Saxon pits were also fully excavated. All ditches and gullies were sampled at least once by hand. All structural features (such as Saxon sunken-featured buildings) were totally excavated. Environmental samples were taken from selected features. All contexts were recorded on a pro-forma context sheet and all features planned. Principle features were drawn in section and photographed.

13.3 Following the completion of the excavation an ordered, indexed and internally consistent site archive was compiled in accordance with Appendix 3 of *The Management of Archaeological Projects* (English Heritage).
14. ARTEFACTUAL EVIDENCE

Introduction

14.1 All finds collected during the excavation have been cleaned, quantified and catalogued. The following section summaries the results of the assessment of the artefacts and proposes requirements for further work.

14.2 The pottery by Jane Timby

14.2.1 The evaluation and excavation together produced c. 1787 sherds of pottery weighing 19.5kg. The assemblage was dominated by wares of early-middle Iron Age and Saxon date accompanied by sherds dating to the Roman, medieval and Post-Medieval periods. The wares were broadly sorted into fabric categories and quantified by sherd and number for each excavated context. The data has been summarised on an Excel spreadsheet. No comparative research has been carried out at this juncture.

14.2.2 The assemblage is a particularly important one for the large quantities of Saxon sherds present which although already well documented from the locality have not been found in such profusion. The later Bronze Age-Iron Age material complements and augments wares already recorded from the Lechlade locality, but again generally speaking sites of this date are scarce in the Upper Thames Valley.

14.2.3 The assemblage is a difficult one to deal with for several reasons. First, there is a great similarity in technology and some overlap in the use of local clays and tempering materials for the Iron Age and Saxon material. Second, it is clear that there is a considerable degree of redeposition of prehistoric material in the Saxon features. Third, the commonest prehistoric fabric, a fossil shell and limestone tempered fabric, was used from the later Bronze Age through
to the middle Iron Age and it is therefore difficult to discriminate between these for undiagnostic single sherds. Finally, of the c 335 contexts yielding pottery, c 124 (37%) only produced one sherd and c 234 (70%) produced between one and five sherds thus limiting refinement of the fabric sequence by considering associated wares.

14.2.4 Prehistoric sherds account for c 72% of the assemblage. The fabrics are dominated by limestone tempered wares which are accompanied by a lesser quantity of sandy wares. Some of the material may well date to the later Bronze Age, typified by a straight-sided vessel with an applied cordon from the evaluation (513). Other odd flint-tempered and coarse shell-tempered sherds may also hint at a later Bronze Age presence.

14.2.5 The bulk of the wares, however, would appear to belong to the early-middle Iron Age. The early Iron Age material includes both fine and coarsewares. The fine wares are generally sandy and included vessels with flaring rims and carinated bodies. Decoration includes incised lines infilling geometric shapes and curvilinear tramlines filled with stab marks. A few haematite-coated wares are also present. The coarsewares mainly comprise calcareous-tempered jars, several of which have finger depressed decoration on the body or rim. Several of the sherds show signs of usage with either leached interior surfaces of sooting.

14.2.6 The middle Iron Age wares comprise plain vertical sided vessels with undifferentiated rims. There are no later Iron Age wares present, suggesting an abandonment at some point in the 3rd-2nd century BC.

14.2.7 The prehistoric pottery from Sherborne House provides a valuable addition to the material already documented from the locality, for eg from The Loders, Roughground Farm, Butlers Field and Gassons Road. Detailed study of this material against these other assemblages should allow a framework ceramic scheme to be developed for the locality which can be compared with material from the Cotswold scarp from hillfort sites such as Crickley Hill and against schemes already established for the lower reaches of the Upper Thames
Land at Sherborne House, Lechlade, Glos: Preliminary Report on an Archaeological Excavation

Valley from sites such as Farmoor, Ashville, Mingies Ditch and Northmoor.

14.2.8 The Roman material, although only totalling 43 sherds, can be split into earlier Roman (AD50-100) and late Roman (4th century). Earlier Roman material was associated with two ditches (204) and (1628). Most of the later wares, including Oxfordshire colour-coated ware, occurred in association with Saxon sherds and may well have been in contemporary usage. A few 2nd-3rd century sherds are present, including a single Dorset black-burnished flat rim bowl sherd from (806) and Wiltshire oxidised ware and Severn Valley ware from (986). Both of these are Saxon contexts and the sherds may therefore be from curated vessels.

14.2.9 The Saxon wares account for c 24% of the assemblage by count, some 427 sherds. Most of the wares are organic-tempered, but a small number of both coarse sand and oolitic limestone-tempered fabrics are also present. At least two sherds carry stamped decoration. Several of the wares are heavily sooted or residue encrusted through use.

14.2.10 It is not clear at present whether organic-tempered wares typical of the early Saxon period occur immediately in the sub-Roman period in this locality, or whether there is an interim sandy ware phase as is becoming apparent in assemblages recently worked on in the east Oxfordshire/Berkshire area. Comparison with material from Butlers Field Saxon cemetery may help elucidate this. Careful consideration of some of the various sandy wares currently placed as prehistoric may be required when the assemblage is studied alongside the site information.

14.2.11 A small number of medieval (12 sherds) and post-medieval (33 sherds) wares are present. This probably reflects in part the shallow nature of the site. The medieval material was generally poor and not indicative of in-situ rubbish. The low incidence would imply this area was not close to any Medieval occupation.

14.2.12 Further analysis: The assemblage has been broadly sorted by fabric and
quantified, but this will need reviewing against the site phasing and site plans to assess its viability. More detailed recording will be necessary to consider details of finish (burnishing, wiping etc), evidence of use (sooting, leaching, furring and residues). A full computer database needs to be prepared. Selected sherds will need to be illustrated.

14.3 The animal bone by Mark Maltby

14.3.1 All animal bones recovered from stratified contexts were scanned. The following data were recorded for each context:

(a) context number
(b) feature number
(c) feature type
(d) phase
(e) number of fragments provisionally identified to each identified species
(f) number of unidentified fragments
(g) total number of fragments
(h) assessment of the state of preservation of the assemblage
(i) priority rating
(j) number of mandibles with surviving teeth for each species,
(k) number of limb bones with epiphysial fusion data
(l) number of measurable bones for each species
(m) other comments

14.3.2 These details were recorded on to a spreadsheet and are stored with the site archive. Records of anatomies represented, fragmentation, gnawing, butchery marks, pathology, ageing and metrical data were not made. Bones from unstratified contexts and from the evaluation excavations (SHL96) were not scanned.

14.3.3 Animal bones were recovered from 243 stratified contexts. These were provisionally assigned to the following four assemblage groups.
14.3.4 The first two groups are self-explanatory and are mainly based on the spot dating of the pottery. Group 3 assemblages are those in which some bones could be identified to species but there is (as yet) insufficient information available for the faunal assemblage to be assigned to a phase. It may subsequently be possible to do so in some cases. Group 4 assemblages have one or more of the following criteria:

(a) they are either Romano-British, medieval or post-medieval in date
(b) they are from Iron Age or undated contexts which did not include bones identifiable to species
(c) they are from contexts where dating is very uncertain and pottery evidence suggests that the assemblage may be of diverse origins.

14.3.5 Fifty-nine contexts assigned to the Anglo-Saxon period (assemblage group 1) produced a total of approximately 1,335 animal bone fragments (Table 1). Over 900 fragments were from six of the Sunken Feature Buildings (SFB) (Table 2). The largest samples were obtained from Structure 1 (369 fragments), Structure 8 (244 fragments) and Structure 3 (115 fragments). The assemblages represent good discrete groups closely associated with the buildings. Smaller samples were obtained from Anglo-Saxon pits, ditches, postholes and other contexts (Tables 1-2).

14.3.6 Preservation of bones from these contexts is generally quite good (Table 1), particularly those from the SFB contexts.

14.3.7 Species of mammal represented (in order of frequency) are cattle, sheep/goat, horse, pig, cat, dog and red deer. The assemblage is dominated by cattle and, to a lesser extent, sheep/goat bones (Table 3). The cattle assemblage includes seven bones from the hind foot of one animal in pit [439]. Pit [319]
produced a small group of worked horn cores of sheep, goat and cattle. All the cat bones belong to a partial skeleton found in Structure 1. Several bones of a large dog were found in contexts (1146), (1148) and (1149). Although the dating of these contexts is problematic, the size of the dog is more typical of the Anglo-Saxon period than the Iron Age.

14.3.8 About 35 bird bones are probably identifiable to species. They consist mainly of domestic fowl, goose and duck but at least three bones of a much larger species, probably crane, are also present. Red deer is represented by a fragmentary and burnt section of antler.

14.3.9 About 54% of the bone fragments are not identifiable to species (Table 3).

14.3.10 Modest samples of mandibles of cattle and sheep/goat were recovered but ageing data can be supplemented by the epiphysial fusion data (Tables 4-5). Very limited ageing data are available for other species. Measurements are possible on 76 bones, mainly of cattle, sheep/goat and bird (Table 6).

14.3.11 Assemblage Group 2 consists of the faunal assemblages obtained from 93 contexts provisionally assigned to the Iron Age and which include bones identified to species. These produced a total of about 767 fragments, including 48% not identified to species (Table 3). The sample is derived mainly from pits (482 fragments from 60 contexts). Sixteen ditch contexts produced 109 fragments. Postholes generally contained few bones (Tables 1-2).

14.3.12 Preservation of the bones is generally not quite as good as in the Anglo-Saxon deposits but nevertheless most of the assemblages have survived in quite good condition (Table 1).

14.3.13 Species representation is very similar to the Anglo-Saxon assemblages apart from the lack of cat, red deer and bird bones. Species represented (in order of frequency) are cattle, sheep/goat, horse, pig, dog and toad. The assemblage is again dominated by cattle and sheep/goat bones (Table 3).
cattle assemblage includes the complete right hind limb of an adult animal from pit [1032]. A set of phalanges of another limb, possibly from the same animal, were found in the same feature. Only sheep were positively identified in the scan of the sheep/goat bones. Pigs appear to have been relatively unimportant.

14.3.14 The horse assemblage was inflated by the presence of two groups of associated bones. The right fore limb and the right hind limb of an adult were found in pit [914]. Some of the bones showed evidence of slight damage from canid gnawing, indicating that the articulated bones were accessible to dogs at some stage. Another complete limb of a horse was found in pit [1836]. In this case the left hind limb was recovered along with the right hind side of the pelvis and part of the right femur. A complete radius and ulna in an adjacent context may also have belonged to the same horse. Context (1094) produced the skull, femur, tibia and four ribs of an adult dog.

14.3.15 Tooth ageing data from Iron Age contexts are limited to only 15 mandibles, mostly of sheep/goat. Fusion data are more common, particularly for cattle and horse, although these totals are swollen by the inclusion of several fusion points from the complete limbs discussed above. The low number of articular surfaces of sheep/goat indicates that the assemblage has been subjected to significant carnivore damage (Tables 4-5).

14.3.16 Seventy bones are measurable, mainly of cattle (Table 6). These include several bones from the complete limbs of cattle and horse. Data from pig, sheep/goat and dog are very limited.

14.3.17 Thirty-seven contexts containing bones in pits, ditches and postholes have not been assigned to phase (Assemblage group 3; Table 1). The total of bones involved (186) is relatively small and these are mainly from ditch deposits (Table 2). Cattle fragments are again the most commonly identified with sheep/goat, pig, horse, dog and a sawn red deer antler fragment also represented. 44% of the fragments are unidentified (Table 3). The standard of preservation of these assemblages is generally similar to those in Groups
1-2 (Table 1). Small numbers of ageable and measurable bones are included (Tables 4-6).

14.3.18 Context (1060) in a ditch produced the well-preserved remains of the front half of a horse skull, the back half of a cow skull and seven bones of an adult dog.

14.3.19 Assemblage Group 4 includes material from 54 contexts containing about 351 bones (Tables 1-2). The largest individual assemblage was obtained from deposit (762), which produced 127 moderately preserved fragments. Although the assemblage included several ageable and measurable cattle and sheep/goat bones and possibly a fox radius and a fragment of human femur, the mixed nature of the pottery make this faunal assemblage difficult to date and unsuitable for further study. The same applies to layer (293), which produced 86 quite poorly preserved fragments. Most of the rest of the bones in this group were obtained from features which cannot be phased because of the lack of datable artefacts or small assemblages from Iron Age deposits, which do not include any bones identified to species. A few assemblages of Roman, medieval and post-medieval date are also included.

14.3.20 **Further analysis:** Full analysis of bones in Assemblage Group 1 is recommended. Although their numbers are comparatively small, they represent a rare opportunity to investigate an assemblage from an Anglo-Saxon rural settlement in the area. The material from the structures form discrete groups and deserve detailed analysis. The results can be compared with assemblages from similar settlements from other parts of England.

14.3.21 A less detailed analysis of bones in Assemblage Group 2 is also recommended. Only bones identifiable to species need be recorded. Special attention should be paid to the partial skeletons and their relationship with other finds in the features involved, as these may represent deliberate primary depositions. Groups of associated bones have been found quite commonly on British Iron Age sites and their significance has been the matter
of much recent discussion. The analysis of this material will provide further evidence to inform this debate.

14.3.22 The Iron Age sample is not large enough to justify detailed intra-site analysis, although variations in species representation in different parts of the settlement should be monitored. The sample is also too small to allow detailed comparisons to be made between Early and Middle Iron Age groups.

14.3.23 It is not recommended that further analysis is carried out on Assemblage Group 3 bones, unless some of the contexts from which they derive can be phased.

14.3.24 No further analysis of bones in Assemblage Group 4 is recommended.

14.3.25 To record all the bones from Assemblage Group 1 and the selected bones from Assemblage Group 2 will provide a sample of about 1,750 bones. Details of species, anatomy, fragmentation and, where possible, ageing, butchery and metrical data should be recorded.

Table 1. Preservation and Location of Animal Bone Assemblages by Assemblage Group and Context Type

<table>
<thead>
<tr>
<th>Group</th>
<th>Good</th>
<th>QG</th>
<th>Mo</th>
<th>QP</th>
<th>Tot</th>
<th>Pit</th>
<th>Dite</th>
<th>SFB</th>
<th>PH</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>27</td>
<td>21</td>
<td>21</td>
<td>59</td>
<td>10</td>
<td>17</td>
<td>21</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>47</td>
<td>31</td>
<td>31</td>
<td>93</td>
<td>60</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
Table 2. Approximate Number of Bone Fragments by Context Type

<table>
<thead>
<tr>
<th>Group</th>
<th>Pit</th>
<th>Ditch</th>
<th>SFB</th>
<th>PH</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148</td>
<td>127</td>
<td>930</td>
<td>75</td>
<td>55</td>
<td>1335</td>
</tr>
<tr>
<td>2</td>
<td>482</td>
<td>109</td>
<td>55</td>
<td>121</td>
<td>767</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>113</td>
<td>23</td>
<td></td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>52</td>
<td>30</td>
<td>32</td>
<td>17</td>
<td>220</td>
<td>351</td>
</tr>
<tr>
<td>Total</td>
<td>732</td>
<td>379</td>
<td>962</td>
<td>170</td>
<td>396</td>
<td>2639</td>
</tr>
</tbody>
</table>

Table 3. Animal Bone Fragments Identified by Assemblage Group

<table>
<thead>
<tr>
<th>Group</th>
<th>Cow</th>
<th>S/G</th>
<th>Pig</th>
<th>Hors</th>
<th>Dog</th>
<th>Deer</th>
<th>Bird</th>
<th>Other</th>
<th>Unid.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>332</td>
<td>177</td>
<td>22</td>
<td>24</td>
<td>12</td>
<td>1</td>
<td>36</td>
<td>14</td>
<td>717</td>
<td>1335</td>
</tr>
<tr>
<td>2</td>
<td>185</td>
<td>110</td>
<td>30</td>
<td>61</td>
<td>12</td>
<td></td>
<td>2</td>
<td>367</td>
<td>767</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>53</td>
<td>28</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td></td>
<td>81</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>43</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td>1</td>
<td>224</td>
<td>351</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>640</td>
<td>358</td>
<td>69</td>
<td>97</td>
<td>31</td>
<td>2</td>
<td>36</td>
<td>17</td>
<td>1389</td>
<td>2639</td>
</tr>
</tbody>
</table>

Cow = cattle; S/G = sheep/goat; Deer = red deer; Unid. = unidentified.

Table 4. Numbers of Mandibles with Surviving Teeth

<table>
<thead>
<tr>
<th>Group</th>
<th>Cow</th>
<th>S/G</th>
<th>Pig</th>
<th>Hors</th>
<th>Dog</th>
<th>Totl</th>
</tr>
</thead>
</table>

QG = quite good; Mod = moderate; QP = quite poor; SFB = sunken feature building; PH = posthole.

Group 1 = Anglo-Saxon; Group 2 = Iron Age; Group 3 = Phase uncertain; Group 4 = miscellaneous (see text for more detailed definitions).
<table>
<thead>
<tr>
<th>Group</th>
<th>Cow</th>
<th>S/G</th>
<th>Pig</th>
<th>Hors</th>
<th>Dog</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55</td>
<td>41</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>111</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>13</td>
<td>6</td>
<td>29</td>
<td>3</td>
<td>103</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>132</td>
<td>68</td>
<td>17</td>
<td>36</td>
<td>9</td>
<td>262</td>
</tr>
</tbody>
</table>

Table 5. Numbers of Limb Bones with Epiphysial Fusion Evidence

<table>
<thead>
<tr>
<th>Group</th>
<th>Cow</th>
<th>S/G</th>
<th>Pig</th>
<th>Hors</th>
<th>Dog</th>
<th>Bird</th>
<th>Cat</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>20</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>19</td>
<td>4</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>3</td>
<td>4</td>
<td>19</td>
<td></td>
<td></td>
<td>4</td>
<td>66</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>88</td>
<td>29</td>
<td>8</td>
<td>27</td>
<td>6</td>
<td>19</td>
<td>4</td>
<td>181</td>
</tr>
</tbody>
</table>

Table 6. Numbers of Measurable Bones

14.4 The fired clay by Jane Timby

14.4.1 A moderate quantity (187 pieces) of fired clay was recovered. A substantial proportion of this comes from annular loomweights of Saxon date. These were found in 64, 188, 292, 438, 440, 484, 488, 536, 668, 782 and 1605 encompassing pits, postholes and SFB’s. Surprisingly there were no recognisable pieces of triangular loomweight to accompany the Iron Age material.
14.4.2 Amongst the prehistoric fired clay were three slingshots, one complete, two fragmentary from 232, 866 and 1655. Fragments of Droitwich briquetage were present in two contexts 856 and 1811. All other pieces comprised amorphous fragments of undefined purpose.

14.4.3 Further analysis: A full catalogue record of the material should be prepared. Selected slingshots (x2), loomweights (x2) and briquetage (x1) will be illustrated.

14.5 The brick and tile by Emma Harrison

14.5.1 A small quantity of brick and tile was recovered. This includes two box tile fragments; one from SFB IX and the other from ditch 204. One other unidentified tile fragment was found in the excavation (1364) and four brick fragments (782, 1060 and 1125). Finds from the evaluation included one brick fragment (221) and eleven tile fragments (315, 407, 410), nine of which are glazed.

14.5.2 Further analysis: a full catalogue record has been compiled. No further work necessary.

14.6 The worked flint by Graeme Walker

14.6.1 Some 109 flints were recovered from the excavation in the following categories:

- Cores: 2
- Core fragments: 71
- Flakes: 55
- Broken flakes: 25
- Broken blades: 3
- Burnt worked flint: 4
Retouched flakes 5
Scrapers 8
Awls 2
Chisel arrowheads ?2
Burnt flint 2

14.6.2 Although the majority of the material is undiagnostic, several scrapers are of distinctive Early Bronze Age type, and one bladelet is clearly Mesolithic. A number of flints display secondary retouch following heavy patination of the original discarded piece. The total assemblage has therefore clearly accrued over a long time, although the majority may well belong to the Later Neolithic/Early Bronze Age given the predominance of flakes over blades.

14.6.3 **Further analysis:** No further analytical work is needed. If there are Bronze Age groups present i.e. such as 1621 they may be worth illustrating.

14.7 *The slag by Lynne Keys*

14.7.1 A total of 1.9kg of iron slag was recovered from excavations at Sherborne House, Lechlade. It was visually scanned and categorised on the basis of morphology, density, vesicularity and colour. Each category within each context was also quantified and any other data concerning the fragments were recorded. The identification and amounts of slag for each period was then examined to look for any particular distinguishing types within periods, if applicable. It was not possible to look at all contexts in this way, however, as dating was not available for some.

14.7.2 Activities involving iron can take two forms. Firstly there is the manufacture of iron from ore and a flux in a *smelting* furnace, usually near the iron ore source. The resulting products are slag and a spongy mass called an unconsolidated bloom which consists of iron with a considerable amount of slag still trapped inside.
14.7.3 The other form of iron working, smithing, can entail primary smithing (hot working) of the bloom on a stringhearth, usually near the smelting furnace, to remove excess slag. The bloom might be split open (to determine its degree of homogeneity) before it was further smithed. Secondary smithing entails working of the iron shape by a smith to turn it into a utilitarian object.

14.7.4 The two activities - smelting and smithing - generate slags, some of which are diagnostic of the process being carried out and others which are not. Only certain types are considered to be strictly diagnostic, i.e. can be unambiguously assigned to a single metalworking process (e.g. iron smelting). Undiagnostic slags are types which may derive from either the iron smelting or smithing process and the process can only be determined in the light of any diagnostic evidence from the site. Other types of debris (e.g. vitrified hearth lining, fuel ash slag, fired clay, burnt stones/pebbles) may be the result of various kinds of high temperature activity - including domestic fires - but their association with diagnostic and undiagnostic iron slags can sometimes give more information about the ironworking activity.

14.7.5 The largest category of slag present at Sherborne House (488g) was undiagnostic iron slag which could represent either smelting or smithing activity. In view of the absence of any slags diagnostic of smelting (such as tap slags, furnace bottoms or raked slags) it is probably derived from smithing activity.

14.7.6 A very dense slag, of which 60g was recovered, had a low porosity, a lathe-like crystalline structure (possibly the result of rapid cooling), and was extremely heavy. It could represent smelting activity but such slags are also encountered on sites where there is no evidence for smelting but abundant evidence for iron smithing. They may represent some type of high temperature welding or have been formed in an environment which promoted rapid cooling.

14.7.7 The most diagnostic type of slag present amongst the data set were the four complete smithing hearth bottoms (SHBs), weighing a total of 754g; a fifth -
from context 319 - was incomplete. 40g of *smiting slag lumps* (SSL) were also identified. Smithing hearth bottoms and smithing slag lumps were the result of high temperature reactions between the iron, iron-scale and silica from either a clay furnace lining or the silica flux used by the smith. The predominantly fayalitic (iron silicate) material produced by this reaction dripped down into the hearth base during smithing forming a slag which, if not cleared out, developed over time into the characteristic plano-convex-shaped smithing hearth bottom in front of and below the tuyère (the hottest part of the hearth) and could eventually impede the air flow from the bellows or greatly reduce the area of working.

14.7.8 The average weight and measurements for the smithing hearth bottoms were: weight: 170g; length: 70mm; width: 50mm; depth: 30mm. The averages are slightly raised by the one Saxon hearth bottom which might seem large in relation to the other complete Saxon and the Iron Age examples from the site. It is, however not unusual for Saxon SHBs to attain this size.

14.7.9 There was a small amount of vitrified hearth lining (VHL, 177g) and some cinder (CIN - 224g), the latter formed at the interface between the alkali fuel ashes and siliceous materials and usually the lighter portion of vitrified hearth lining. Some iron objects (4g) were amongst the slag as was a very heavy iron lump (24g). As the lump comes from a post-medieval context further speculation about it would be pointless and possibly misleading.

14.7.10 Although some of the slag from the site could derive from either iron smelting or smithing, in the absence of any definite evidence for smelting and the evidence for smithing, the bulk of the slag assemblage probably derives from secondary iron smithing.

14.7.11 There was no slag evidence which could be assigned to the Romano-British period. For the Iron Age and Anglo-Saxon periods evidence for smithing activity is not great and most of the debris for the latter period came from pits and two of the sunken-featured buildings (SFB VI and VII). In the absence of secure evidence for smithing having taken place in these buildings,
the assumption must be that the slag was thrown in there to dispose of it after the buildings were no longer in use.

14.7.12 None of the slag is *in situ* and there is no evidence for hammerscale in any of the soil adhering to it. This implies that smithing activity was either occasional in the periods for which there is evidence, with the small amount of debris being discarded in dug features around the site, or the site of the activity was some distance away.

14.7.13 **Further analysis:** A mention of the slag should be made in any publication of the site but other than this no further work is required apart from the following: the small stones could be identified to ensure they are not ore of some type. This should not take long but it would be necessary to liaise with the relevant geological specialist in this matter. Iron objects, including nails, found in contexts with slag should be considered in tandem with the ironworking waste in any future publication work since they may be the product of the smithing activity.

CATALOGUE OF IRON SLAG FROM SHERBORNE HOUSE.
All measurements are in mm.; weights in g.

Key to abbreviations used: B. = breadth; D. = depth; Fe = iron; ferr.concret. = ferruginous concretion; IA = Iron Age; L. = length; mat. = material; obj. = object; PMED = post-medi eval; SAX = Saxon; SHB = smithing hearth bottom; SSL = smithing slag lump(s); v. = very; VHL = vitrified hearth lining; wt. = weight;

<table>
<thead>
<tr>
<th>Context</th>
<th>Pd</th>
<th>Interpretation</th>
<th>Wt.</th>
<th>L.</th>
<th>Br.</th>
<th>D.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>SAX</td>
<td>dense</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>lathe structure</td>
</tr>
<tr>
<td>91</td>
<td>PMED</td>
<td>carbonised mat.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>PMED</td>
<td>Fe lump</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>very heavy, solid</td>
</tr>
<tr>
<td>Code</td>
<td>Age</td>
<td>Type</td>
<td>Qty</td>
<td>Measurements</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>------------</td>
<td>-----</td>
<td>--------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>-</td>
<td>cinder</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>IA</td>
<td>Fe obj.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>IA</td>
<td>SSL</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>IA</td>
<td>VHL</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>-</td>
<td>undiagnostic</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>IA</td>
<td>cinder</td>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>?IA</td>
<td>VHL/cinder</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>IA</td>
<td>cinder</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>IA</td>
<td>cinder</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>IA</td>
<td>SHB</td>
<td>94</td>
<td>50 40 30</td>
<td>fragment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>IA</td>
<td>undiagnostic</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>IA</td>
<td>VHL</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>-</td>
<td>undiagnostic</td>
<td>2</td>
<td>121E/134N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>-</td>
<td>undiagnostic</td>
<td>2</td>
<td>128E/138N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>-</td>
<td>unidentified</td>
<td>20</td>
<td>121E/131N; small, dark stone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>-</td>
<td>unidentified</td>
<td>20</td>
<td>128E/138N; v. heavy, dark stone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>319</td>
<td>SAX</td>
<td>Fe obj.</td>
<td>2</td>
<td>broken; very flat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>319</td>
<td>SAX</td>
<td>SHB</td>
<td>74</td>
<td>small fragment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>319</td>
<td>SAX</td>
<td>SHB</td>
<td>88</td>
<td>50 40 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>319</td>
<td>SAX</td>
<td>undiagnostic</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>319</td>
<td>SAX</td>
<td>VHL</td>
<td>78</td>
<td>?includes part of tuyere hole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>-</td>
<td>unidentified</td>
<td>2</td>
<td>stone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>588</td>
<td>-</td>
<td>undiagnostic</td>
<td>12</td>
<td>poss. SSL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>642</td>
<td>SAX</td>
<td>undiagnostic</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>646</td>
<td>SAX</td>
<td>cinder</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>762</td>
<td>-</td>
<td>SHB</td>
<td>78</td>
<td>70 50 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>762</td>
<td>IA</td>
<td>dense</td>
<td>48</td>
<td>40 35 20</td>
<td>possible SHB, very small</td>
<td></td>
<td></td>
</tr>
<tr>
<td>810</td>
<td>-</td>
<td>undiagnostic</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>857</td>
<td>SAX</td>
<td>SHB</td>
<td>420</td>
<td>11 70 50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.8 The worked stone by Fiona Roe

14.8.1 Four objects of worked stone were recovered, as well as over 20 small fragments of lava from ditch 1060=1408.

14.8.2 The Iron Age objects consist of a hammerstone (small find 42) from pit 811 and a pebble which was possibly used as a slingstone from pit 1815.

14.8.3 A fragment of a small rotary quern from posthole 1537 (small find 39) could be Late Iron Age or Roman in date.

14.8.4 The Saxon finds consist of a fragment of a small rotary quern from posthole 691 (small find 46) and the lava fragments from Saxon ditch 1408.

14.8.5 **Further Analysis:** The stone objects will be fully described and the stone types identified. The quern fragments and hammerstone will be illustrated.

14.9 The environmental evidence by Keith Wilkinson

Introduction
14.9.1 A total of 30 samples were taken during excavations at Sherborne House, Lechlade, comprising 28 bulk samples (*sensu* Wilkinson 1994) and two kubiena tins for micromorphological study. The bulk samples consisted of between 15-30L of sediments and were intended for flotation processing (French 1971) to recover charred plant remains, mollusc shell, small mammal bones and fine artefactual material in order to reconstruct the contemporary subsistence economy and environment. The kubiena tins were taken through *grubenhaus* fills for micromorphological study to determine if the fills were the results of occupation activity or consisted solely of deliberately redeposited material.

14.9.2 The micromorphological samples were not studied during the assessment phase due to the lengthy sample preparation time and the necessity of completing the assessment rapidly. However, the potential importance of these samples is considered alongside stratigraphic and other environmental data below.

14.9.3 All the bulk samples were examined for the assessment. The samples came from the following context types:

<table>
<thead>
<tr>
<th>Type</th>
<th>Total samples</th>
<th>Sample codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Age pit fills (primary)</td>
<td>5</td>
<td>1, 2, 3, 9, 15</td>
</tr>
<tr>
<td>Iron Age pit fills (secondary)</td>
<td>6</td>
<td>21, 22, 23, 24, 25, 26</td>
</tr>
<tr>
<td>Saxon pit fills (secondary)</td>
<td>4</td>
<td>12, 16, 27, 30</td>
</tr>
<tr>
<td>Saxon ditch fills (secondary)</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>Saxon Grubenhaus fill (primary)</td>
<td>3</td>
<td>5, 10, 17</td>
</tr>
<tr>
<td>Saxon Grubenhaus fill (secondary)</td>
<td>8</td>
<td>4, 6, 7, 11, 13, 14, 18, 19</td>
</tr>
<tr>
<td>Saxon other</td>
<td>1</td>
<td>29</td>
</tr>
</tbody>
</table>

14.9.4 Samples were collected in the field both by the excavation team and by the present author according to the guidelines given in Cotswold Archaeological Trust Technical Manual 2 (Wilkinson 1994) and transported to the CAT
offices for processing (no on-site processing was carried out). Ten litre sub-samples of each bulk sample were then processed using the flotation technique with meshes of 250µm and 500µm used for the flot and residue respectively. Both flots and residues were air dried prior to sorting, there being no waterlogged preservation on the site.

14.9.5 For the purposes of assessment the flots were scanned under a low power binocular microscope by the author and basic identification and quantification of major plant and mollusc groups made. No attempt was made to distinguish between different species of cereals. The residues fractions greater than 2mm were sorted by a technician who removed all mollusc shells, animal bone, cereal grains and other identifiable plant remains. The assessment below is made on the basis of both the flot and residue (>2mm) data (Table 0).

14.9.6 The scanned flots, biological and artefactual remains recovered from the residues and the unsorted residue fractions have been retained alongside the completed pro-forma record sheets in the project archive. The two kubiena samples also form part of the archive and are currently being stored in cool, light tight conditions.

Iron Age

14.9.7 Archaeobotanical studies have previously been carried out on samples from a number of Iron Age sites in the surrounding area including Farmoor, Oxon. (Lambrick and Robinson 1979), Mingies Ditch, Witney, Oxon. (Allen and Robinson 1993), and Groundwell West, Swindon (Wilkinson 1995), although not from sites in Lechlade itself.

14.9.8 Plant remains were preserved only by charring, but in the majority of contexts sampled there was extensive evidence for root intrusion, which had often led to the introduction of modern (uncharred) weed seeds. Charred cereal grains were present in around one half of the samples in very low quantities suggesting that they form in most cases part of a site-wide scatter of occupation debris introduced into the sampled contexts by processes of
erosion and redeposition. Interestingly there was no conclusive evidence for the presence of cereal processing waste (such as spikelet forks or rachis remains) from any sample (Iron Age or Saxon), while quantities of charred weed seeds were also small in all except one sample (number 30), suggesting that little, if any crop processing took place on the site in either the Iron Age or Saxon period.

14.9.9 All the samples taken from Iron Age contexts were from pit fills. The pits appear - on the basis of the archaeological evidence - to have had differing functions, with some being used to demarcate certain areas of the site, and others being used for storage. Samples 1, 2, and 3 are all from primary fills of a line of pits thought to have formed some sort of boundary. The plant remains recovered from these are extremely limited in quantity consisting of just three cereal grains from sample 2, a couple of charred weed seeds from sample 1 and a general scatter of fine wood charcoal. These remains are all likely to have been introduced into the pits in either deliberately deposited sediment or through material eroding from the contemporary soil and thus do not provide any indication for the pits having a cereal storage usage. Indeed these pit fills appear to have reasonably uniform stratigraphy suggesting that they were deliberately filled.

14.9.10 The remaining samples from Iron Age pits are from features that are not on any alignment and are thus less likely to form part of a boundary. However, primary fills of two of these (samples 9 and 15) contain few charred remains, consisting of just a single cereal grain and two nut shell fragments from sample 9 and nothing from sample 15. This lack of evidence does not preclude an interpretation of a storage usage of the pits as uncharred cereal grains would simply have rotted away, but it does make this interpretation less likely. It is notable that the pits are not of the “beehive” shape which was commonly used for storage purposes in the Iron Age and found in the recently excavated site of Groundwell West, Swindon (Wilkinson 1995).

14.9.11 Reasonable quantities of charred plant remains were found in burnt and ashy lenses within secondary fills of a number of “non-aligned” pits (e.g. samples
21, 22, 23 and 26), accompanied by moderate or low quantities of wood charcoal. These remains largely consist of cereal grains, with just a single legume seed and a few weed seeds also being noted. There can be little doubt that these well defined burnt horizons represent material deliberately deposited into the pits from hearth or cereal parching sweepings. Indeed the layers follow well developed tip lines indicating that they did not form part of a primary activity surface (such as a fire lit within the pit). Therefore the archaeobotanical data provide no indication of the original pit usage, merely that it was later re-used for deposition of domestic rubbish.

14.9.12 Mollusc shells were recovered in small numbers from most Iron Age pit fill samples. Mollusc assemblages from pits are rarely studied because of problems in understanding shell derivation and taphonomy, and also because the environment reconstructed from such remains can only be representative of a very small area around the pit (Evans 1972). Nonetheless occasionally useful data can be obtained to “flesh out” plant macro remain interpretations, as at Groundwell West, Swindon (Wilkinson 1995).

14.9.13 The mollusc shells from Iron Age pits at Sherborne House, Lechlade are almost all from species indicative of open environments, e.g. *Pupilla muscorum*, *Vallonia* sp. and *Helicella itala*. Only occasionally are individuals of species of more catholic preferences encountered, including *Trichia* sp. and *Cochlicopa* sp. These data, coupled with the almost complete absence of shade loving species (only a single shell of the Zonitidae family was found in sample 22, and a single individual of the genus *Carychiium* in sample 1), are significant, as if the pits had remained open for any length of time shade loving species would have rapidly colonised the dark microenvironment and therefore been found in the samples. Thus it is likely that the pits were deliberately filled in a single or short series of operations and did not stand open for any length of time. These conclusions apply to both the “aligned” and “non-aligned” pits.

Saxon
14.9.14 Samples were taken from a variety of different Saxon period contexts for assessment. Most sampling was concentrated upon the grubenhäuser as the most important Saxon contexts, and the only features that were demonstrably the location site of human occupation activity. All except one of the grubenhäuser were intensively sampled, while two kubiena tins were also taken from separate grubenhäuser for the reasons discussed above. As discussed above grubenhäuser are extremely rare in Gloucestershire and uncommon in Oxfordshire. However, still less common are grubenhäus that have been studied using environmental archaeological techniques - there being no examples from surrounding counties. This despite the fact that the sub-Roman - early Saxon period represented by grubenhäus occupation is still one of the least well understood periods in British archaeology, and is highlighted as such by English Heritage (1991). Environmental archaeological research of grubenhäuser that has been undertaken at sites in eastern England (for example West Stow, Suffolk (Murphy 1985), West Cotton, Northants. (Campbell 1994) and Old Down Farm and Cowdery’s Down, Hants. (Green 1981; 1983)) indicates that Roman agricultural practices continued, with spelt wheat still being used in otherwise barley dominated economies, and rye being largely absent. Spelt wheat is rarely recorded in middle Saxon sites whereas rye is, indicating that a change in agricultural practice must have taken place either during or soon after the early Saxon period. Impression of spelt wheat grains have also been found on grass tempered pottery recovered from grubenhäus at Mucking (van der Veen 1981-83).

14.9.15 A single waterlogged grubenhäus has been studied from Manor Farm, Harmondsworth where good biological preservation has enabled a more detailed reconstruction of early Saxon diet to be made (Rackham 1994; Davis forthcoming). It was noted that fig, grape, raspberry/strawberry, elder and pear/apple were also consumed in addition to cereals, remain types which are less likely to be found charred. The first two fruits names are likely to have been imported, suggesting that overseas trade of foodstuffs did take place in the early Saxon period.
14.9.16 It has been hypothesised that the primary fills of *grubenhäuser* form from material falling though the contemporary floor boards. If this is the case (the proposed micromorphological study would help to clarify this problem - see below), any biological remains present could be representative of occupation activity on the floor above. Unfortunately no charred plant remains were recovered from either of the sampled primary fills, which merely contained large quantities of modern roots and intrusive modern seeds.

14.9.17 Charred plant remains were more numerous in the secondary fills of the *grubenhäuser*, although even here no more than five grains were found in each sample, accompanied by a few weed seeds and wood charcoal. The origin of the secondary *grubenhäus* fills is somewhat problematic, and is unlikely to represent *in situ* domestic activity, but rather re-deposited occupation debris, accumulating following the fall of the structure into disuse. However, given current ideas on the length of use of individual *grubenhäus* (Hamerow 1991) the fills are likely to contain near contemporary refuge.

14.9.18 Plant remains are a great deal more numerous in two pits which appear to be contemporary with the *grubenhäuser* (samples 16 and 30). Both pit fills examined contain large quantities of cereal remains, and in the case of sample 30, large numbers of weed seeds too. Sample 30 also appear to contain nut shell fragments. However, the floral composition of the two samples suggests that the pits had different usage. Sample 16 contains literally hundreds of cereal grains, but no other class of botanical remain suggesting that the sample is from a storage pit containing fully processed grain. Sample 30, as has been indicated above contains grains, weed seeds, nut shell and charcoal, suggesting that the remains are simply domestic and crop processing rubbish that have been placed in the pit for disposal. Thus both assemblages provide quite different information about the contemporary economy. Two further Saxon period pit samples (numbers 12 and 27) contain almost no plant remains and therefore little can be said concerning pit function. Similarly the Saxon period ditch fill of sample 28 contains no plant remains other than large quantities of modern roots.
14.9.19 Mollusc shells were found in moderate numbers in the Saxon contexts as with those of Iron Age date. The mollusc assemblages are almost identical to their Iron Age predecessors, again indicating that sampled features were rapidly filled following their abandonment. The molluscan data from the primary *grubenhäus* fills do not support the assertion that these fills represents material falling through floorboards as the assemblages are dominated by open country species, and do not contain a single shade dwelling individual (shade loving species would be expected in dark microenvironments below floorboards). Interestingly a single mollusc shell in sample 30 is burnt suggesting either that it was transported along with the charred plant remains and redeposited, or that burning took place *in situ*.

Assessment

14.9.20 Given the undoubted importance of the site it is a great pity that preservation of biological remains was not greater. This is particularly true of the Saxon period contexts as the opportunity to study early Saxon material using environmental archaeological techniques is rare. It is especially unfortunate that so few remains were recovered from the *grubenhäus* fills, which indeed seems to be a feature of this monument type in general. Preservation of biological materials in the Iron Age contexts was also variable, and the low levels of recovery that were achieved are consistent with other recently excavated sites in the area.

14.9.21 While samples from Iron Age pits demarcating territory contained almost no plant remains, some finds were made in samples from secondary fills of pits of uncertain usage. This plant macro-fossil data could potentially provide valuable new information on the sites’ Iron Age subsistence economy, in determining whether the site was an importer of cereal products or whether crop cultivation and processing took place on site, and how the food crops used by Iron Age peoples in Lechlade compared with contemporary sites in the surrounding area.

14.9.22 Plant remains were almost uniformly poorly preserved in the various
grubenhäus fills sampled. However, the very sterility of the samples provides information in itself, perhaps indicating that very little crop processing took place within the huts. Indeed the mollusc data suggests that all the grubenhäus fills post date the usage of the structures and therefore that they are not representative of in situ habitation. Nevertheless the same source of data suggests that the fills accumulated very quickly after abandonment, while the moderately high concentrations of artefactual material in the fills indicates that derivation is from occupation debris / rubbish. Therefore any plant remains that are found are likely to be indicative of diet in the settlement, something which cannot easily be reconstructed from other lines of evidence. The limited remains that were recovered also take on especial significance in light of the absence of botanical data from most other grubenhäus sites in England, and therefore their further study is of importance.

14.9.23 Plant remains from the Saxon period pits are numerous. As these features date to the same period as the grubenhäuser these remains have an extremely high archaeological importance as their study should facilitate a detailed reconstruction, not only of early Saxon diet, but also (in the case of sample 30) of farming practice. Previously botanical remains of this quantity have only rarely been found from rural sites of the early Saxon period, e.g. King’s Somborne, Hants. (Green unpublished), while urban sites - which commonly contain deposits rich in plant remains - are unknown (with the possible exception of Canterbury) before the later 7th century. Further study of the current assemblages will thus provide a link between the comparatively well known late Roman subsistence situation and that of the middle Saxon period which is more familiar from urban sites such as Gloucester (Green 1979).

14.9.24 The molluscan remains recovered during the current assessment have provided information allowing the genesis of certain fills to be more firmly established than would have otherwise been the case. However, given the problems of interpreting assemblages from features such as pits and grubenhäuser in greater detail there is little point in further study.

14.9.25 Although the two kubiena tins were not studied as part of the assessment their
importance is manifest. At no site has it firmly been established whether the primary filling of a grubenhäus is caused by occupation debris falling through floorboards or if the primary fills are indeed secondary and accumulated following the fall of the grubenhäus into disuse. A micromorphological study of the samples from Lechlade could provide data to address this problem, and the results could conceivably be of national significance.

14.9.26 Given the change in farming practice that is believed to have taken place in the early Saxon period, and the fact that botanical remains of this period survive in certain samples from the site, accurate dating and phasing of the site is of clear importance. However, in common with most early Saxon sites the only ceramics present are of the generic “grass tempered” and “sand tempered” fabrics which date from the 5th to 8th centuries (Timby 1995). Such a wide date range is obviously undesirable when interpreting the site in relation to others where more precise dating has been possible - for example using dendrochronology. Obviously dendrochronology cannot be used on a site - such as Sherborne House - where timbers are not found, but thought should be given to thermoluminescence dating of individual grass tempered sherds (samples of which were collected and are currently in suitable storage for just such a purpose). Use of such a technique has previously been recommended to English Heritage in just such situations as the present one (Holbrook, Prosser and Wilkinson 1995), and through clustering of individual dates could potentially indicate in exactly what century the site was occupied.

14.9.27 **Further analysis:** It is recommended that the remaining portion of Iron Age pit samples 21, 22, 23, 24, 25 and 26 be processed and the enclosed plant remains extracted. These should be submitted, along with the flots from these samples examined during the current assessment, to an archaeobotanist for analysis.

14.9.28 Despite the apparent poor preservation of biological remains in the grubenhäus fills it is nevertheless desirable that an attempt be made to recover as much evidence as possible. Thus samples from a single grubenhäus should be selected and all remaining material processed to recover biological remains.
The plant remains should then be submitted alongside the Iron Age material discussed above, for detailed analysis. Given the fact that the charred plant remains that were recovered from grubenhäus were from “SFB I”, samples from this feature should be selected, i.e. samples 4-7. This grubenhäus also has had a kubiena tin taken through its sedimentary profile.

14.9.29 All additional material from the Saxon pit samples 16 and 30 which are of extremely high importance should also be processed and submitted for analysis as above.

14.9.30 Finally micromorphological analysis should be made of both kubiena tin samples in order to determine exactly how each grubenhäus fill formed.

14.10 The metalwork by Jane Bircher

14.10.1 Two conjoining fragments of a copper alloy pin were recovered from the subsoil (small find 9).

14.10.2 Fragments of folded lead or pewter sheet were recovered from 507 (small find 3). They are possibly from a reliquary case for a pilgrim’s object.

14.10.3 The iron objects include three knives, an awl or chisel, a drop handle, two interlinked loops, 12 nails or studs and various fragments.

14.10.4 **Further analysis:** Selective cleaning of the metalwork will be undertaken in order to facilitate identification and description. A full catalogue record will be compiled and where possible dated. Selected items will be drawn.

14.11 Other small finds by Jane Bircher

14.11.1 Other small finds include three spindle whorls (two stone and one ceramic).
14.11.2 Seven bone objects were recovered. The Iron Age objects consist of a gouge or point and a toggle. There is also a Roman pin (359, small find 13) a Saxon ‘cheese-headed’ pin (440, small find 15), bone comb (242, small find 8).

14.11.3 A needle (54, small find 6) and ring are undated (762, small find 41).

14.11.4 **Further analysis:** A full catalogue record will be made of all small finds. Selected items will be illustrated.

14.12 **The glass by Emma Harrison**

14.12.1 Two small sherds of glass were recovered, one each from deposits 293 and 762. Both are post-medieval sherds from bottles

14.12.2 **Further analysis:** none required

14.13 **The shell by Emma Harrison**

14.13.1 Seven small oyster shell fragments were recovered from five excavations contexts (091, 188, 293, 975, 1812) and two evaluation contexts (408, 410).

14.13.2 **Further analysis:** none required.

14.14 **The coins by Peter Guest**

14.14.1 Preliminary identification

<table>
<thead>
<tr>
<th>SF No.</th>
<th>Context</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subsoil</td>
<td>AE radiate</td>
<td>260-300</td>
</tr>
</tbody>
</table>
14.14.2 **Further analysis:** The five coins are of widely differing types and dates. Two coins SF 17 and 52 although found within the upper fills of pits are possible intrusive, resulting from subsoil slumping into the features. These factors, together with the small number of coins, indicates that the potential for further meaningful study of this limited. Therefore the post-excavation study will consist of full identification of the coins if possible.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(102)</td>
<td>?Nuremburg jeton</td>
<td>16/17th century</td>
</tr>
<tr>
<td>17</td>
<td>(451)</td>
<td>Dobunnic AR unit</td>
<td>mid-late 1st century</td>
</tr>
<tr>
<td>30</td>
<td>(581)</td>
<td>AE</td>
<td>347-348</td>
</tr>
<tr>
<td>52</td>
<td>(1825)</td>
<td>Cut AR farthing</td>
<td>Late med</td>
</tr>
</tbody>
</table>

15. STATEMENT OF POTENTIAL

15.1 The excavation results can now be assessed against the original objectives. Objective 4.1 (see p.9 above) has been achieved through the establishment of the LBA/EIA settlement site, the MIA activity, and the Anglo-Saxon settlement features. However, the lack of stratigraphic relationships means the chronology of the LBA/EIA settlement and length of occupation has not been elucidated. The full chronology of the Saxon settlement also remains undetermined. Full analysis of the pottery assemblage and archaeological record may help to resolve these questions.

15.2 The LBA/EIA occupation will be examined with reference to contemporary activity at Butler’s Field, Gassons Road and Roughground Farm. Comparisons will also be sought with further settlement within the Upper Thames valley at Stanton Harcourt, i.e. Linch Hill and Gravelly Guy, and at Ashville.

15.3 The MIA activity will also be compared with local sites, i.e. Claydon Pike and Thornhill Farm, as well as the regional examples cited above.
15.4 Attempts will be made to investigate the absence of late Iron Age and Romano-British features from the excavation.

15.5 The dating of the Anglo-Saxon settlement will largely be dependent upon comparison of the pottery and artefactual with the material from the Butler’s Field cemetery. The dating of the settlement, especially as it is likely to be contemporary with the nearby cemetery, is of high importance. Comparison of settlement forms will be undertaken both regionally (New Wintles, Oxon.; Dorchester, Oxon) and nationally (Mucking, Essex; Chalton, Hants; Catholme, Staffs etc).

15.6 It is anticipated that further spatial analysis, particularly of the large number of postholes, will identify further settlement components.

16. PROPOSAL FOR POST-EXCAVATION ANALYSIS

Objectives

To produce a coherent, synthesised report on the site and artefacts for early dissemination via an academic article in the Transactions of the Bristol and Gloucestershire Archaeological Society.

To ensure that the project archive is fully ordered and indexed, and of a satisfactory standard to be deposited with Corinium Museum, Cirencester, Gloucestershire.
List of Tasks to complete project

<table>
<thead>
<tr>
<th>Category</th>
<th>Task Description</th>
<th>Name</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Begin Project (milestone)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 Project Management and Liaison</td>
<td></td>
<td>DE</td>
<td>5</td>
</tr>
<tr>
<td>B Pre-analysis tasks-Finds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1 Cleaning and conservation</td>
<td></td>
<td>Oxon Mus</td>
<td>3</td>
</tr>
<tr>
<td>C Pre-analysis-environmental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 Processing and sorting samples</td>
<td></td>
<td>EH</td>
<td>5</td>
</tr>
<tr>
<td>D Pre-analysis-stratigraphic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1 Stratigraphic analysis</td>
<td></td>
<td>CB</td>
<td>3</td>
</tr>
<tr>
<td>E Prepare Briefs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1 Prepare briefs for finds reports</td>
<td></td>
<td>EH</td>
<td>0.5</td>
</tr>
<tr>
<td>E2 Prepare briefs for enviro reports</td>
<td></td>
<td>KW</td>
<td>0.5</td>
</tr>
<tr>
<td>F Finds Reports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 Slag</td>
<td></td>
<td>LK</td>
<td>1.5</td>
</tr>
<tr>
<td>F2 Worked Flint</td>
<td></td>
<td>GW</td>
<td>0.25</td>
</tr>
<tr>
<td>F3 Pottery</td>
<td></td>
<td>JT</td>
<td>9</td>
</tr>
<tr>
<td>F4 Worked Stone</td>
<td></td>
<td>FR</td>
<td>0.5</td>
</tr>
<tr>
<td>F5 Metalwork/Special Finds</td>
<td></td>
<td>JB</td>
<td>2.5</td>
</tr>
<tr>
<td>F6 Coins</td>
<td></td>
<td>PG</td>
<td>0.5</td>
</tr>
<tr>
<td>F7 Edit Finds reports</td>
<td></td>
<td>TBA</td>
<td>1.5</td>
</tr>
<tr>
<td>F8 Revision</td>
<td></td>
<td>EH</td>
<td>1</td>
</tr>
<tr>
<td>G Environmental Reports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1 Plant macro Report</td>
<td></td>
<td>JJ</td>
<td>7</td>
</tr>
<tr>
<td>G2 Thin Section prep</td>
<td></td>
<td>JH</td>
<td>2</td>
</tr>
<tr>
<td>G3 Micromorphology Report</td>
<td></td>
<td>JH</td>
<td>4</td>
</tr>
<tr>
<td>G4 Animal bone</td>
<td></td>
<td>MM</td>
<td>10</td>
</tr>
</tbody>
</table>
Structural Report

<table>
<thead>
<tr>
<th>Section</th>
<th>Contributor</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 Introduction</td>
<td>CB</td>
<td>0.5</td>
</tr>
<tr>
<td>H2 Local Topography</td>
<td>CB</td>
<td>0.5</td>
</tr>
<tr>
<td>H3 LBA/ EIA</td>
<td>CB</td>
<td>2</td>
</tr>
<tr>
<td>H4 MIA</td>
<td>CB</td>
<td>3</td>
</tr>
<tr>
<td>H5 Saxon</td>
<td>CB</td>
<td>7</td>
</tr>
<tr>
<td>H6 Edit structural report</td>
<td>TBA</td>
<td>2</td>
</tr>
<tr>
<td>H7 Revisions</td>
<td>CB</td>
<td>3</td>
</tr>
</tbody>
</table>

Illustrations

<table>
<thead>
<tr>
<th>Section</th>
<th>Contributor</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1 Structural Illustrations</td>
<td>PM</td>
<td>7</td>
</tr>
<tr>
<td>I2 Finds Illustrations</td>
<td>PM</td>
<td>5</td>
</tr>
<tr>
<td>I3 Enviro Illustrations</td>
<td>PM</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Discussion

<table>
<thead>
<tr>
<th>Section</th>
<th>Contributor</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 Prepare Text</td>
<td>CB</td>
<td>4</td>
</tr>
<tr>
<td>J2 Editing</td>
<td>TBA</td>
<td>2</td>
</tr>
<tr>
<td>J3 Revisions</td>
<td>CB</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Editing

<table>
<thead>
<tr>
<th>Section</th>
<th>Contributor</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2 Final Revisions</td>
<td>CB</td>
<td>1</td>
</tr>
</tbody>
</table>

Archive

<table>
<thead>
<tr>
<th>Section</th>
<th>Contributor</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Order archive for microfilming</td>
<td>EH</td>
<td>0.5</td>
</tr>
<tr>
<td>L2 Deposit Archive</td>
<td>EH</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Key to contributors:

- **CB** Cliff Bateman, CAT
- **JB** Jane Bircher, Specialist Consultant
17. SYNOPSIS FOR PROPOSED REPORT

17.1 Title:

Iron Age and Anglo-Saxon Settlement to the Rear of Sherborne House, Lechlade, Gloucestershire

17.2 Summary Composition of Publication

Abstract
Brief Summary of principle features in the report 300 words

Introduction
Project Background, archaeological background and geological background 1200 words

Excavation Results (C Bateman) 8500 words
Finds Reports

Pottery (J. Timby) 4000 words
Fired Clay (J. Timby) 250 words
Metalwork (J. Bircher) 750 words
Other small finds (J. Bircher) 750 words
Slag (L Keys) 150 words
Worked Stone (F. Roe) 450 words
Flint (G. Walker) 150 words

Economy, environment and landscape reports

Animal bone (M. Maltby) 3500 words
Plant macrofossils (C Stevens) 1000 words
Mollusc shells (K. Wilkinson) 500 words

Discussion (C. Bateman & D Enright) 5500 words

Bibliography 1500 words

Acknowledgements 100 words

Figures

1 Site location
2 General multi-phase plan of excavation
3-9 Detailed plans and sections of structures 1-9
10-11 Plans and sections of selected pits
12-15 Interpretative phase plans
20-21 Pottery illustration
21 Metalwork and worked bone illustration
22 Worked stone illustration

Summary

Total length of text c. 28,600 words/ 34 pages
Total length of figures 22 pages

Total report length c. 56 pages
18. BIBLIOGRAPHY

Allen, T.G., Darvill, T.C., Green, L.S., Jones M.U. 1993 Excavations at Roughground Farm, Lechlade, Glos; a prehistoric and Roman landscape.

Cunliffe, B. 1991 Iron Age Communities in Britain

Verey, D. 1979 *The buildings of Gloucestershire*, 214

Fig. 3 Trench location plan, showing archaeological features
Fig. 4 Trenches 1-5, sections